Generating functions for shifted plane partitions

نویسنده

  • C. Krattenthaler
چکیده

With the help of a tableaux method, determinant formulas for trace generating functions for various classes of shifted plane partitions are derived. Proceeding from these determinants, generalizations of Gansner's (J. hook formulas for shifted plane partitions and alternative proofs of recent results of Proctor about alternating trace generating functions are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Proofs of Hook Generating Functions for Skew Plane Partitions

Sagan, B.E., Combinatorial proofs of hook generating functions for skew plane partitions, Theoretical Computer Science 117 (1993) 273-287. We provide combinatorial proofs of two hook generating functions for skew plane partitions. One proof involves the Hillman-Grass1 (1976) algorithm and the other uses a modification of Schiitzenberger’s (1963, 1977) “jeu de taquin” due to Kadell (to appear). ...

متن کامل

(q, t)-Deformations of multivariate hook product formulae

We generalize multivariate hook product formulae for P -partitions. We use Macdonald symmetric functions to prove a (q, t)-deformation of Gansner’s hook product formula for the generating functions of reverse (shifted) plane partitions. (The unshifted case has also been proved by Adachi.) For a d-complete poset, we present a conjectural (q, t)-deformation of Peterson–Proctor’s hook product form...

متن کامل

t)-deformations of multivariate hook product formulae

We generalize multivariate hook product formulae for P -partitions. We use Macdonald symmetric functions to prove a (q, t)-deformation of Gansner’s hook product formula for the generating functions of reverse (shifted) plane partitions. For a d-complete poset, we present a conjectural (q, t)-deformation of Peterson–Proctor’s hook product formula.

متن کامل

Plane Partitions

Throughout our study of the enumeration of plane partitions we make use of bijective proofs to find generating functions. In particular, we consider bounded plane partitions, symmetric plane partitions and weak reverse plane partitions. Using the combinatorial interpretations of Schur functions in relation to semistandard Young tableaux, we rely on the properties of symmetric functions. In our ...

متن کامل

Tableaux and plane partitions of truncated shapes ( extended abstract )

We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted staircase without the box in its upper right corner, i.e. truncated by a box, a rectangle truncated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993